
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
12489 Berlin, G

E-mail addr

dornhege@first

meinecke@first
Neurocomputing 69 (2006) 1608–1618

www.elsevier.com/locate/neucom
From outliers to prototypes: Ordering data

Stefan Harmelinga,b,�, Guido Dornhegea, David Taxc,
Frank Meineckea, Klaus-Robert Müllera,b

aFraunhofer FIRST.IDA, Kekuléstrasse 7, 12489 Berlin, Germany
bDepartment of Computer Science, University of Potsdam, August-Bebel-Strasse 89, 14482 Potsdam, Germany

cDelft University of Technology, Information and Communication Theory Group, P.O. Box 5031, 2600 GA, Delft, The Netherlands

Received 1 July 2004; received in revised form 21 May 2005; accepted 24 May 2005

Available online 1 December 2005

Communicated by S. Hochreiter
Abstract

We propose simple and fast methods based on nearest neighbors that order objects from high-dimensional data sets from typical

points to untypical points. On the one hand, we show that these easy-to-compute orderings allow us to detect outliers (i.e. very untypical

points) with a performance comparable to or better than other often much more sophisticated methods. On the other hand, we show how

to use these orderings to detect prototypes (very typical points) which facilitate exploratory data analysis algorithms such as noisy

nonlinear dimensionality reduction and clustering. Comprehensive experiments demonstrate the validity of our approach.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Outlier detection; Novelty detection; Ordering; Noisy dimensionality reduction; Clustering; Nearest neighbors
1. Introduction

Exploratory data analysis tries to find simple representa-
tions of high-dimensional data that best reflect the under-
lying structures. There are few robust methods that can be
used for this purpose in high dimensions. In fact, most real-
world data sets are spoiled by outliers arising from many
different processes, e.g. measurement errors or miss-labeled
samples. So it is necessary to remove outliers from the data
to avoid erroneous results.

In the statistics literature, a large emphasis is put on the
problem of outlier detection in univariate data [2,18]. In
univariate data the objects are trivially ordered, which
eliminates the problem of finding a one-dimensional
measure for characterizing the typicality of an object.
The main challenge is then to decide where to set the
e front matter r 2005 Elsevier B.V. All rights reserved.

ucom.2005.05.015

ing author. Fraunhofer FIRST.IDA, Kekuléstrasse. 7,

ermany.

esses: harmeli@first.fhg.de (S. Harmeling),

.fhg.de (G. Dornhege), davidt@first.fhg.de (D. Tax),

.fhg.de (F. Meinecke), klaus@first.fhg.de (K.-R. Müller).
threshold to distinguish between genuine and outlier
objects.
For the problem of outlier detection in multivariate

data, more complicated models have to be applied in
order to impose an ordering on the data. A well
known method from the statistics community is the
minimum covariance determinant (MCD) estimator [29]:
find h observations out of n, such that its covariance
matrix has the smallest determinant. The objects are
then ordered according to their Mahalanobis distance
to the data mean. Although this method is very robust,
it is not very flexible because it only fits a Gaussian
distribution to the data. More flexible density models
include the Parzen density model [3] or the mixture
of Gaussians [31]. The Parzen density can be approxi-
mated by defining the support of a data set by fitting
balls of fixed size around the training set [12,1]. Unfortu-
nately, density estimation in high-dimensional spaces is
difficult, and in order to reliably estimate the free
parameters, the models have to be restricted significantly
in complexity.
From the pattern recognition/machine learning field

more heuristic methods originate, for instance, neural

www.elsevier.com/locate/neucom


ARTICLE IN PRESS
S. Harmeling et al. / Neurocomputing 69 (2006) 1608–1618 1609
network models [23,19] or models which are inspired by the
support vector classifiers [32,7,34]. They avoid performing
the often very difficult density estimation, and directly fit a
decision boundary around the data, but are often not
simple to implement and optimize. Also the outputs of
traditional two-class classifiers can be used for outlier
detection [38], thus focusing on the outliers from the
perspective of the classification problem.

Ref. [20] studies distance-based outliers which are
defined with respect to two parameters p and D: a data
point x is a distance-based outlier, abbr. DBðp;DÞ-
outlier, if at least fraction p of the other points lies
greater than distance D from x. The DBðp;DÞ-outlier are
global outliers, because D and p are chosen for all data
points. If the data consists of several clusters with different
variances, it can be difficult to choose a single D which is
appropriate. Thus, methods have been developed which
focus on local properties of the data, e.g. local outlier
factors (LOF, see [6]). LOF introduces an outlier index
which is based on a sophisticated theory of ‘‘local
reachability’’ and nearest neighbors, which gives rise to a
somewhat convoluted index. The outlier indices proposed
in this paper are defined in terms of nearest neighbors as
well, but are designed to be as simple and straightforward
as possible.

Most of the existing methods implicitly imply certain
definitions of what an outlier actually is, which are
often not explicitly stated. In this paper, we call data
points outliers if their true probability density is
very low. Obviously, the difficulty of this particular notion
is that the true probability density is unknown and it is a
challenge to obtain a reasonable estimate—especially in
high dimensions. However, the indices proposed in this
paper, some of which have been previously used for outlier
detection in [28,14], coarsely approximate the probability
density. Thus these indices are in principle applicable to all
settings that assume outliers to be data points in sparse
regions.

Notice that most methods mentioned above provide an
ordering of objects in a data set, according to their
typicality. Very untypical objects are candidates to be
labeled as outliers. On the other hand, it is of similar
importance to detect the most common or prototypical
samples in a data set. The latter is often useful to gain a
better understanding of the data. This idea will be
elaborated in this paper as well.

Summing up, this paper proposes simple indices
(see Section 2) based on nearest neighbors that allow
an ordering of the data from outliers to prototypes.
Once this representation is established we can use
it for (1) prototype detection (see Section 3.1), (2)
outlier removal, or accordingly novelty detection (see
Section 3.2), and (3) robustification of unsupervised
algorithms (see Section 3.3). Experiments on toy and
real data sets and handwritten digits underline the
practicability of our algorithm, in particular for high-
dimensional data sets.
2. Indices for ordering

Consider a set of n data points from the d-dimensional
Euclidean space,

fx1; . . . ;xng � Rd ,

with the Euclidean norm, kxk ¼
ffiffiffiffiffiffiffiffiffi
x>x
p

, and the Euclidean
metric. Other metrics (e.g. other Riemannian metrics or
Mahalanobis distance) can be effortlessly incorporated in
our framework. For a data point x 2 Rd , let

z1ðxÞ; . . . ; zkðxÞ 2 fx1; . . . ;xng � Rd ,

be its k nearest neighbors among the given data points
x1; . . . ;xn (with respect to the chosen metric). In terms of
these neighbors, we define three indices for each point
x 2 Rd . We will later use them for the ordering process. As
usual, the choice of k influences the perception of the data:
if k is chosen too small the focus is too local, if k is too
large it is too global.

2.1. Kappa

The k-nearest neighbor density estimator assesses the
density at a particular point by calculating the volume of
the smallest ball centered at that point which contains its k

nearest neighbors and relating it to the quotient k=n. It can
be proven that this density estimator is L2-consistent (see
[22]). Unfortunately, the estimate is not always very
accurate if the number of data points is small or the
dimensionality is high. However, outlier detection does not
require the actual density. In order to decide whether a
data point is an outlier or not, an approximate estimate is a
sufficient indicator. Our first index thus represents the
essence of the k nearest neighbor density estimator: kðxÞ is
the radius of the smallest ball centered at x containing its k

nearest neighbors, i.e. the distance between x and its kth
nearest neighbor,

kðxÞ ¼ kx� zkðxÞk.

Obviously, in dense regions k is small and in sparse regions
k is large, making it a good candidate for an outlier index,
as the rationale is that outliers lie in sparse regions.

2.2. Gamma

The index k, however, seems to be somewhat wasteful: it
considers the distance to the kth nearest neighbor, but it
ignores the distances to the closer neighbors. This suggests
a refined index that takes the distances to all k nearest
neighbors into account: gðxÞ is x’s average distance to its k

nearest neighbors,

gðxÞ ¼
1

k

Xk

j¼1

kx� zjðxÞk.

This index enables us to distinguish the two situations
depicted on the left panel of Fig. 1: the value of k is the



ARTICLE IN PRESS

�(a) = 5

�(a) = 4.6

�(a) = 5

�(a) = 2.8

�(a) = 4.6

�(a) = 2.6

�(a) = 4.6

�(a) = 0.8

a

b

f

e

c
4

5

5

4d

5
a

e

b

5d
f

c
2

3
2

2

e
c f

a

b

f

e

c

d

a

d

b

Fig. 1. The left panel shows that g can distinguish better between sparse

and dense regions than k. The right panel shows that d takes also the

directions to the neighbors into account, whereas g does not. Both panels

assume k ¼ 5.

S. Harmeling et al. / Neurocomputing 69 (2006) 1608–16181610
same in both situations, because the 5th nearest neighbor
of a has both times the same distance to a, although the
neighborhood on the right is denser. By exploiting all
distances, g can distinguish both situations.
2.3. Delta

Looking at the right panel of Fig. 1, we see two
situations that are indistinguishable for g (and for k as
well), because the distances from a to its neighbors are the
same in both settings. The directions of a’s neighbors reveal
the difference: on the left, a’s neighbors point approxi-
mately into the same direction. On the right, a’s neighbors
are spread out in all directions. This information is
captured by the following definition. dðxÞ is the length of
the mean of the vectors pointing from x to its k nearest
neighbors,

dðxÞ ¼
1

k

Xk

j¼1

ðx� zjðxÞÞ

�����
�����.

d is large if the neighbors are located in the same direction.
This happens especially for outliers since they have often
all (or most) of their neighbors in one closest cluster. d
enables us to distinguish points in regularly filled sparse
regions (all neighbors in different directions) from points
which are outside clusters (all neighbors in the same
direction).
2.4. Comparison

We note that d is bounded by g which itself is bounded
by k,

kðxÞXgðxÞXdðxÞX0,

which is easily seen by observing that 2 maxðkak;
kbkÞXkak þ kbkXkaþ bkX0 holds. This means that if
dðxÞ is large (implying that x is probably an outlier) also
gðxÞ is large. On the contrary, if dðxÞ is small, then gðxÞ does
not need to be small, since it might have ignored some
relevant information. Therefore, in contrast to d, g might
misjudge a point from a sparser region to be an outlier. The
analog discussion holds for gðxÞ and kðxÞ.
2.5. Computational complexity

All three indices calculate the distance matrix, which
requires Oðn2dÞ operations for n data points of dimension
d. Finding the kth nearest neighbor of one point can be
done in linear time (selection in expected linear time, see
[9]). For k we have to do this for each point, i.e. Oðn2Þ. So,
the total time complexity for k is Oðn2d þ n2Þ. g and d
require all k nearest neighbors, which can be found
(using k times selection in expected linear time) in OðknÞ

for each point, i.e. in total Oðn2d þ n2kÞ for all points. For
large k, we can also sort all neighbors of a point (in
Oðn log nÞ), i.e. in total Oðn2d þ n2 log nÞ for all points.
Summarizing, k requires Oðn2d þ n2Þ and g and d need
Oðn2d þ n2 maxðk; log nÞÞ.
The previous considerations discuss the costs for

calculating k, g or d for a fixed k. In some applications
(e.g. in Section 3.2) we can obtain the optimal k by
cross-validation. What are the computational costs for
this parameter-selection process? Usually, an r-fold
cross-validation requires the complete method to be
repeated r times for different splits. Fortunately, the
distance matrix between all data points has to be calculated
only once. After splitting the data set into training
and validation set, the required distances can be read
out instantly of the large distance matrix. Then for a given
split having the columns of the distance matrix sorted
once, all different ks can be tested with low additional
costs (which is a common trick for k-nearest neighbor
algorithms).
Note, that because the running time of k, g and d is

quadratic in the number of data points, large data sets
might be difficult to process. A simple trick is to calculate
the distance matrix only for blocks of a certain size along
the diagonal and to calculate the indices per block.
However, this would waste some of the information
contained in the data. Instead we suggest to employ
sophisticated data structures such as kd-trees, metric-trees,
ball-trees (see [15,37,27]) or approximate methods to find
the nearest neighbors (see [21] and references therein)
which can reduce the running times significantly.
3. Applications

The definitions of k, g and d have been motivated mainly
by outlier detection. In Section 3.2 we show that these
indicators are indeed powerful tools to detect outliers,
especially if the data is high-dimensional. After that, we
introduce a new approach based on these indices to
robustify unsupervised algorithms such as clustering
(Section 3.3.1) and nonlinear dimensionality reduction
(Section 3.3.2). The idea is to discard some large
proportion of the data in order to reveal the underlying
structure. But first, to get an intuitive feeling for the
indices, we apply them to a toy data set.



ARTICLE IN PRESS

Table 1

The dimensionalities and sample sizes (targets) of the considered data sets

Data set Dims Targets

1 Iris-virginicia 4 50

2 Breast cancer Wisconsin 9 458

3 Sonar (90% PCA) 10 111

4 Hepatitis database 18 105

5 Imports85 data set 25 71

6 Delft pump data (separate) 32 913

7 Sonar (no PCA) 60 111

8 Delft pump data (appended) 160 189

9 NIST, class 0 256 200

10 Concordia, class 0 1024 400

S. Harmeling et al. / Neurocomputing 69 (2006) 1608–1618 1611
3.1. Finding prototypical data points

To understand some given set of data points, often, the
most prototypical points are instructive, which we describe
in this section. For data that lies on a nonlinear manifold,
these points are generally quite different from the mean
which in those cases does not always have a reasonable
interpretation.

To illustrate the basic idea, we sort 200 points that are
sampled from a circular distribution. The four panels in
Fig. 2 show the results. The points are plotted as circles
with varying size according to the value of the respective
indices: distance to the mean and k, g, d (for k ¼ 5, other
values for k lead to similar results). The distance to the
mean ignores the underlying structure: the size of the circles
depends only how close a point is to the center, which is the
mean. In contrast, the proposed indices k, g and d order
the points from the dense regions to the sparse regions, i.e.
the circles in the concentrated areas along the ring are
small, in the other areas large. Therefore, the points with
the smallest index are representative for the underlying
structure. These prototypical points will be used in Section
3.3 to enhance algorithms that search for structure.

To explain the behaviors of the indices for two clusters,
we created a data set with 100 points sampled from two
Gaussian distributions with different mean and variance.
The left-most panel of Fig. 3 shows that sorting the points
distance to mean κ γ δ

Fig. 2. 400 data points sampled from a circular distribution shown as little

circles. The size of the circle indicates the values of one of four indices:

distance to the mean (from left to right) and k, g, d (with k ¼ 5). The

distances to the mean used in the left-most panel ignore the underlying

structure, while the other three indices reflect this structure.

distance to mean κ γ δ

Fig. 3. 100 data points sampled from two Gaussians with different

variances. The size of each circle indicates the values of one of four indices:

distance to the mean and k, g, d (with k ¼ 5). The circle-sizes in the left-

most panel ignore the structure in each cluster and the fact that there are

two clusters. The other indices grow from the inside to the outside for each

cluster. Since the upper cluster is more concentrated, its circles are smaller.
according to the distance to the mean ignores the structure
in each cluster and the fact that there are two clusters. The
indices k, g, d sort the data points from the inside of the
clusters to the outside. However, note that points from a
denser cluster are considered more prototypical than the
points from the inside of a sparse cluster. Thus the most
prototypical points according to k, g and d of a data set
might belong all to the same cluster. This fact is no
problem for the examples in this paper (see e.g. Section
3.3). However, some applications such as robust indepen-
dent component analysis require that the prototypes
belong to different clusters. This can be achieved by a
simple heuristic (see [17,24,25] for details).
Note that random sampling also provides representative

points. However, in contrast to k, g and d such points lie
only with high probability in the densest regions. Further-
more, such a sampling does not deliver a sorting on all data
points.

3.2. Detecting outliers on real data sets

In this section we compare k, g and d with six other
standard outlier detection methods. First, we will introduce
the data sets, then we discuss the other methods and the
training and evaluation procedure. Finally, we report the
results.

3.2.1. Data sets

In these experiments we consider 10 real world data sets,
most of them from the UCI-repository [4]. The data sets
differ in dimensionality (ranging from 4 up to 1024) and
sample size (from 50 to more than 900), see Table 1.
The Sonar data set appears twice: (1) as the original data

(60-dimensional) and (2) with reduced dimensionality
(using PCA keeping 90% of the variance).
The two pump data sets (Nos. 6 and 8) contain vibration

measurements of a water pump [40,39]. The pump can be
operating in normal working conditions or in one of
three faulty operation modes (loose foundation, bearing
failure or imbalance). Five instantaneous vibration
measurements were performed on the pump. On these



ARTICLE IN PRESS

0 1
1

0

�0

�t

ROC−curve

AUC

Fig. 4. The ROC-curve shows the error on the target data, �t, against the

S. Harmeling et al. / Neurocomputing 69 (2006) 1608–16181612
time-series an auto-regressive model was fitted and the
obtained coefficients were treated as feature vectors. In
the first data set, these five measurements were treated
independently and were added to the data set as
independent samples. In the second data set these five
measurements were concatenated to one large feature
vector.

The NIST and Concordia data sets are high-dimensional
data sets containing images of handwritten digits. The
NIST data set contains 16� 16 images, The data set used
in the experiments was taken from the Special Database 3
distributed on CD-ROM by the U.S. NIST, the National
Institute for Standards and Technology. Currently, this
database is discontinued; it is now distributed together with
Database 7 as Database 19 on the NIST website.1 The
preprocessing used is described in [11]. The other hand-
written digits database, the Concordia data set [8], contains
32� 32 images.

3.2.2. Outlier detection methods

We compare the three indices k; g and d with six other
outlier detection methods:

Gauss density estimator (Gauss): For this simple uni-
modal model, the mean and covariance matrix has to be
estimated. When the inversion of the covariance matrix
becomes problematic, the covariance matrix is regularized
by adding a constant to the diagonal. This constant is the
hyper-parameter of the method. A large distance to the
mean distinguishes outliers from the rest of the data.

Minimum-covariance-determinant Gaussian (MCD): This
is almost the same model as the Gaussian density method
above; however, for the estimation of the covariance
matrix 75% of the data is used (see [29]). This fraction of
the data is selected such that it gives the smallest
determinant for the covariance matrix. No hyper-para-
meter is optimized in this method. We used a Matlab
implementation, called FAST-MCD.2

Parzen density estimator (Parzen): This is a standard
kernel-based density estimator, e.g. for a Gaussian kernel it
is a mixture of Gaussian distributions that are centered on
each single training point. The hyper-parameter of this
method is the width of the kernel. The width is optimized
by maximizing the likelihood in a leave-one-out fashion on
the training set (like in [13,16]).

Mixture of Gaussians (MoG): k Gaussian clusters with
full covariance matrices are estimated using the EM
algorithm [36]. The number of clusters k is the hyper-
parameter.

Support vector data description (SVDD): SVDD fits a
hyper-sphere around the target class (see [34]; alternatively,
the hyper-sphere separates the origin from the data with
maximum margin as described in [32]). These one-class
classifiers can be made more flexible by introducing
support-vector-kernel functions. In these experiments, a
1See http://www.nist.gov/srd/nistsd19.htm
2Available at http://www.agoras.ua.ac.be/Robustn.htm
Gauss-kernel is chosen (also called radial-basis-function-
kernel, or short RBF-kernel). The width of this kernel is
the hyper-parameter.

k-means clustering (k-means): A k-means clustering is
applied such that the means characterize the target
distribution. For each object, the distance to the nearest
mean measures the outlierness (see [33]). k is the hyper-
parameter.

3.2.3. Error estimation

Most of the data sets are multi-class data sets. In order
to test outlier detection methods on this data, we consider
the points of one of the given classes as the targets (i.e. the
non-outliers) and consider the points from the other classes
as outliers. The target data is split into training and testing
data in order to estimate the performance by a 5-fold cross-
validation. The one-class methods are fitted on the training
data (which contains only targets). Then the objects from
the left-out data combined with the outlier data are one-by-
one evaluated.
On the test data the receiver-operating-characteristic

curve, abbr. ROC-curve (see [26]), is computed: for all
possible threshold values, the error on the target data �t

and on the outlier data �o is calculated. The resulting curves
are compared by estimating the area under the ROC
curves. ‘Area under curve’ is abbreviated as AUC (see [5];
see also Fig. 4). This is defined as

AUC ¼ 1�

Z 1

0

�tð�oÞd�o. (1)

The larger this area, the better the distinction between the
target and outlier data. Perfect separation is obtained for
AUC ¼ 1:0. A classifier which randomly assigns the labels
‘target’ and ‘outlier’ will obtain AUC ¼ 0:5.
Most of the methods contain a hyper-parameter.

The Parzen density and the SVDD contain the hyper-
parameter s (the width of the kernels), while the mixture of
Gaussians, k-means and the k; g and d-indices contain the
error on the outlier data, �0. The area under the curve (abbr. AUC)

measures the quality of the separation. AUC ¼ 1 means perfect

separation, AUC ¼ 0:5 means random separation.

http://www.nist.gov/srd/nistsd19.htm
http://www.agoras.ua.ac.be/Robustn.htm


ARTICLE IN PRESS

Table 2

AUC performances (�100, with standard deviations in the brackets) of the considered outlier detection methods for 10 real world data sets

1 2 3 4 5

Gauss 97:4 ð�1:9Þ 98:9 ð�0:8Þ 63:3 ð�6:8Þ 80:2 ð�13:9Þ 75:9 ð�4:7Þ
MCD-Gauss 97:4 ð�2:2Þ 99:2 ð�0:5Þ 63:4 ð�7:0Þ 81:9 ð�14:8Þ 75:1 ð�6:5Þ
Parzen 95:5 ð�2:5Þ 99:3 ð�0:4Þ 83:3 ð�2:7Þ 57:7 ð�14:8Þ 85:4 ð�4:8Þ
MoG 96:5 ð�2:5Þ 99:2 ð�0:3Þ 73:7 ð�4:4Þ 81:0 ð�10:1Þ 88:6 ð�2:1Þ
SVDD 97:7 ð�1:6Þ 98:8 ð�1:0Þ 86:1 ð�4:8Þ 49:9 ð�5:0Þ 83:4 ð�5:8Þ
k-means 96:7 ð�2:3Þ 99:5 ð�0:3Þ 81:2 ð�2:8Þ 43:9 ð�12:6Þ 79:1 ð�5:9Þ
k 95:3 ð�2:1Þ 99:6 ð�0:2Þ 80:4 ð�3:4Þ 55:0 ð�8:2Þ 81:0 ð�3:3Þ
g 96:0 ð�2:6Þ 99:7 ð�0:2Þ 81:3 ð�5:3Þ 61:8 ð�7:8Þ 84:3 ð�6:0Þ
d 96:4 ð�2:5Þ 99:7 ð�0:1Þ 79:9 ð�2:1Þ 57:2 ð�5:4Þ 85:0 ð�3:8Þ

6 7 8 9 10

Gauss 80:1 ð�0:0Þ 74:5 ð�2:4Þ 99:8 ð�0:0Þ 95:3 ð�2:9Þ 96:9 ð�0:0Þ
MCD-Gauss 75:1 ð�0:0Þ — — — —

Parzen 95:2 ð�0:3Þ 83:3 ð�3:6Þ 99:2 ð�0:2Þ — —

MoG 71:6 ð�0:0Þ 78:8 ð�2:6Þ 99:2 ð�0:1Þ — —

SVDD 90:7 ð�0:0Þ 59:6 ð�11:7Þ 99:8 ð�0:1Þ 98:1 ð�0:5Þ 96:5 ð�0:3Þ
k-means 92:3 ð�0:1Þ 82:0 ð�5:0Þ 99:4 ð�0:3Þ 98:5 ð�0:8Þ 96:8 ð�0:4Þ
k 95:5 ð�0:0Þ 83:3 ð�4:1Þ 99:3 ð�0:1Þ 98:8 ð�0:7Þ 96:3 ð�0:9Þ
g 97:3 ð�0:0Þ 87:0 ð�4:9Þ 99:3 ð�0:1Þ 98:6 ð�0:7Þ 96:3 ð�1:7Þ
d 96:4 ð�0:0Þ 84:7 ð�4:4Þ 99:2 ð�0:1Þ 98:5 ð�0:9Þ 96:1 ð�0:9Þ

3Thanks to the reviewer for giving this suggestion.

S. Harmeling et al. / Neurocomputing 69 (2006) 1608–1618 1613
hyper-parameter k. When an outlier detection method
contains a hyper-parameter, this hyper-parameter will be
selected by applying nested 5-fold cross-validation on the
training set. This means that one 5-fold cross-validation (to
estimate the hyper-parameters) is performed within an-
other 5-fold cross-validation (to estimate the AUC).

Note that for k, g and d, the model selection, i.e. the
optimization over the hyper-parameter k, is computation-
ally inexpensive. The distance matrix of the complete
training set has to be computed only once and sorted along
the columns (this computation is the most expensive part).
After that, the AUC for different k can be easily calculated.
For other methods, the model selection is computationally
much more expensive. In particular, the optimization of the
SVDD and MoG is very time consuming, since the former
involves solving quadratic programming problems for a
large number of free parameters, and the latter requires the
convergence of the EM-algorithm.

3.2.4. Results

Table 2 shows the AUC performances for all outlier
detection methods on all data sets (one column per data set).
We see that even for low dimensions (data sets 1, 2 and 3),
the results of k, g and d are very competitive. Notice that all
classifiers perform almost equally and that the performance
differences are not significant for the first two data sets.

In the data sets with reasonably large dimensionalities
(around 30 dimensions, data sets 4 and 5), the target and
the outlier class heavily overlap. Because the target class
appears to be approximately Gaussian, the Gaussian
density estimation works acceptably. Particularly, data
set 4 is under-sampled, and the variance in the performance
is high. In the five cross-validation runs for finding a good
k for k, the best ks were 3, 8, 12, 25 and 47, which indicates
that the learned models of the different cross-validations
are highly unstable. The simpler Gaussian, MCD Gaussian
and mixture of Gaussians (the latter simply mimicking the
single Gaussian) are therefore better on this data set.
Nevertheless, an instability in the estimates of the hyper-
parameter can be used as an indicator to discard a method
for the given data set. However, noting that the methods
based on covariance matrices perform well, it is worth
trying to run all other methods again with the correspond-
ing Mahalanobis distance, i.e. compensating different
scaling of certain directions.3 Table 3 shows that this
intuition is right and all methods have comparable
performance on data set 4 using the Mahalanobis distance.
For higher dimensions (larger than 60, especially data

sets 7, 8, 9 and 10) our methods perform very well. This is
in contrast to the density estimators, which can completely
fail. It is very hard to estimate a density reliably in these
high-dimensional spaces. The Parzen density and the
mixture of Gaussian methods gave a zero density estimate
for almost all objects, hereby classifying all objects as
outliers. No ROC-curve and AUC performance could be
computed for these methods (for that reason the table entry
contains a long dash —). For the one-class classifier that
can deal with a large number of dimensions, an almost
optimal performance is obtained in those cases. The single
Gaussian density gave acceptable results after a careful
regularization of the covariance matrix. This might indicate
that these data sets contain not much nonlinear structure,
thus being not particularly hard. Furthermore, the fact that
those high-dimensional data sets are well described by a



ARTICLE IN PRESS
S. Harmeling et al. / Neurocomputing 69 (2006) 1608–16181614
regularized Gaussian fit might imply that those data sets
are approximately Gaussian distributed. In high dimen-
sions this means that most points are orthogonal to and
have similar distances between each other. However,
despite of this lack of structure, which k, g and d try to
exploit (see Section 2 and Fig. 1), those indices perform
also very well in that situation.

Table 4 shows the training and testing times of the
classifiers for the first 5 data sets (all algorithms run
on a computer with an AMD Athlon processor with
1533MHz). Each method is trained and tested 10 times on
the data sets, without using model selection. The reported
times are the average of those 10 runs.
�

Ta

Ch

per

Ga

MC

Par

Mo

SV

km

k
g
d

Ta

Av

Tra

Ga

MC

Par

Mo

SV

k-m

k
g
d

Tes

Ga

MC

Par

Mo

SV

k-m

k
g
d

The training and testing times of the Gaussian are short
(at the expense of being an inflexible model).

�
 The training times for the MCD-Gaussian, SVDD and
mixture of Gaussians can be very long if the optimiza-
tion is stuck on some plateau. Evaluations are fast.
ble 3

anging the metric on data set 4 to Mahalanobis distance improves the

formance for most methods significantly

4 4 (Mahalanobis)

uss 80:2 ð�13:9Þ 81:7 ð�11:6Þ
DGauss 81:9 ð�14:8Þ 73:5 ð�15:2Þ
zen 57:7 ð�14:8Þ 77:6 ð�12:1Þ
G 81:0 ð�10:1Þ 72:0 ð�10:4Þ
DD 49:9 ð�5:0Þ 78:2 ð�13:8Þ
eans 43:9 ð�12:6Þ 77:1 ð�12:8Þ

55:0 ð�8:2Þ 77:3 ð�12:7Þ
61:8 ð�7:8Þ 78:9 ð�11:6Þ
57:2 ð�5:4Þ 79:4 ð�9:8Þ

ble 4

erage training and testing times (in ms) of the considered outlier detection

1 2

ining times (in ms)

uss 13 (72) 15 (70)

D-Gauss 3074 (731) 24 (71)

zen 26 (71) 144 (72)

G 189 (75) 293 (73)

DD 373 (73) 14100 (780)

eans 19 (70) 77 (715)

10 (70) 119 (72)

11 (70) 118 (71)

10 (70) 120 (72)

ting times (in ms)

uss 6 (71) 8 (71)

D-Gauss 6 (71) 7 (71)

zen 22 (71) 200 (73)

G 12 (70) 17 (73)

DD 7 (70) 47 (71)

eans 7 (71) 11 (71)

8 (70) 174 (72)

9 (71) 177 (75)

9 (71) 176 (71)
�
 The training and testing times of the k, g and d indices
are mainly determined by the training set size (see data
set 2 and 6), as was to be expected from the discussion in
Section 2.5. Note that there are data structures which
can speed up methods based on nearest neighbors such
as k, g and d (for a discussion on this see Section 2.5).

3.3. Revealing hidden structure in noisy data

Often, the statistical structure of a data set is expressed
by the points in the denser regions. Common approaches
typically make strong assumptions on the data (e.g.
parametric statistics presupposes certain distributions).
The indices k, g and d open up a new approach: by
ignoring the data in sparser regions (e.g. points with large
g) and focusing on the denser regions (e.g. points with small
g), the true underlying structure can be found using simple
algorithms. This concept omits not only the classical
outliers, which might arise from distributions other than
the true data distribution, but also data points from the
true distribution which are located in sparse regions.
In the following, we illustrate this idea for clustering

(Section 3.3.1) and for noisy nonlinear dimensionality
reduction (Section 3.3.2).

3.3.1. Clustering

We robustify a clustering algorithm, that calculates the
minimum spanning tree (abbr. MST, see [9]) of the given
data points and then cuts the longest edge to obtain two
clusters. Obviously, this simple method fails if the data is
very noisy or if there are outliers in the data, because those
are very likely the ones that will be cut off. Simply by
ignoring the untypical data points (in other words: by
methods for 5 real world data sets (averaged over 10 repetitions)

3 4 5

13 (70) 14 (70) 14 (70)

6284 (728) 23 (71) 23 (71)

30 (71) 30 (71) 27 (71)

209 (73) 237 (72) 245 (72)

349 (710) 68 (71) 115 (72)

33 (74) 27 (76) 28 (76)

15 (71) 16 (74) 12 (70)

15 (71) 14 (70) 12 (70)

17 (75) 14 (70) 12 (70)

7 (71) 7 (70) 8 (70)

7 (70) 7 (70) 8 (70)

30 (71) 26 (71) 26 (71)

12 (70) 13 (71) 14 (70)

15 (74) 12 (71) 10 (70)

7 (70) 7 (70) 7 (71)

17 (71) 12 (70) 11 (70)

17 (70) 12 (71) 11 (71)

20 (75) 13 (71) 12 (71)



ARTICLE IN PRESS

Fig. 5. Clustering results for MST-based clustering using all data (left

panel) and the 50% proportion with the smallest g (right panel, the

omitted points are gray). The underlying graphs are the MSTs. The thick

edges show the cuts. ‘+’ and ‘o’ indicate to which cluster a given point is

assigned. Right panel: after determining the cut (and therewith the two

clusters) on the selected points (shown in black), the omitted points are

assigned in a greedy manner. The underlying graph is the MST.

0 5 10 15 20 25 30 35 40 45 50

before

error in %

κ

γ

δ

Fig. 6. Box plots (showing minimum, 25%, median, 75%, maximum) of

the classification errors for the simple clustering method explained in the

text for all 45 two-digit subsets of the USPS handwritten digits data set.

Thinning out the data sets using k, g and d reduces the original errors

(shown in the first row) considerably.

S. Harmeling et al. / Neurocomputing 69 (2006) 1608–1618 1615
focusing on the prototypes) this plain and fast clustering
algorithm becomes useful.

Fig. 5 illustrates the basic idea for a toy data set
(consisting of 200 data points sampled from a bimodal
Gaussian distribution): applying the MST-based clustering
to all data points cuts off only a single outlier as one of the
clusters (left panel), which is not the wanted result; by
ignoring 50% of the data that have a large value of g
(calculated for k ¼ 5), the MST-based clustering algo-
rithms finds a meaningful cut. The omitted points are
added in a greedy manner: add the not-yet-assigned point
to the closest clusters (consisting of the so-far-assigned
points) until all points are assigned. The right panel shows
that the correct clustering has been found (‘+’ and ‘o’
represent the assigned labels). Note that the choice of the
proportion of points to keep and the choice of k is
uncritical.

A more difficult test bed for clustering are the 45 subsets,
each containing exactly two classes of the USPS hand-
written digits (in total about 7000 data points). Because for
this data the correct labels are known, we can evaluate the
clustering results. To analyze the MST-based clustering
that uses all data (as explained above), we apply it to all 45
subsets: as was conceivable, we observe that in all but two
cases of the 45 experiments, the longest edge in the MST
connects only one point (probably an outlier) to the rest of
the points (in the other two cases it connects two points).
Cutting this edge leads to one big cluster that contains all
but one point (in two cases: all but two points). Assuming
that the larger cluster belongs to the larger of the two
classes (each subset collects data points from exactly two
digits), the errors (summarized in the upper box plot in Fig.
6) reflect only the prior probabilities of the particular pairs
of digits. We see that the simple algorithm based on MSTs
fails if we use all points.

Following our robustification concept, we choose some
fraction n of the points from the denser regions; for this we
employ the indices k, g and d for a certain k. Then we
calculate the MST on the reduced set of points and obtain
two clusters by cutting its longest edge. The omitted points
are added to the found clusters as explained above for the
toy example.
The hyper-parameters k and n 2 f0:02; 0:04; 0:06; . . . ; 1g

are chosen by a simple heuristic: choose k and n such that
the size of the smaller cluster is maximized. This heuristic
favors solutions in which both clusters are estimated in a
reliable and robust way (since they contain many points).
The range of n for which we get good results is quite large,
so it is not crucial to choose it precisely. Again, the model
selection procedure is inexpensive (see Section 2.5).
In order to calculate errors, we assign the known labels

to the clusters. There are two possibilities, each leading to a
possibly different error. The three lower box plots in Fig. 6
are based on the smaller of the errors for k, g and d. In all
cases, the performance has been improved considerably
compared to n ¼ 1 (i.e. keeping all points, shown in the
upper box plot in Fig. 6), especially for index d. The values
of k and n have been chosen using the heuristic explained in
the previous paragraph. It turned out that often a very
small fraction (as small as n ¼ 0:02) is enough to capture
the structure of the underlying clusters. Note that, having
peeked at the errors for all possible values for k and n, we
observe that even smaller errors are possible for certain k

and n. This suggests that it is promising to try other model
selection strategies for k and n.

3.3.2. Noisy nonlinear dimensionality reduction

Recently, several methods have been proposed that find
nonlinear embeddings of high-dimensional data (e.g.
[30,35]). Unfortunately, these methods are sensitive to
noise. A strategy to robustify these methods for practical
applications (where noise is often present) is to remove
untypical data points (that originate e.g. from noise) before
applying the unsupervised algorithm. Fig. 7 shows an
illustrative example: 1000 data points are drawn from a
one-dimensional manifold (in the shape of a spiral) that is
embedded in the two-dimensional space. The one-dimen-
sional manifold defines a natural ordering of the points



ARTICLE IN PRESS

0 200 400 600 800 1000
0

200

400

600

800

1000

original numbering

nu
m

be
rin

g 
fo

un
d 

by
 Is

om
ap

using all of the data

200 400 600 800

100
200
300
400
500
600
700
800
900

original numbering

nu
m

be
rin

g 
fo

un
d 

by
 Is

om
ap

ignoring 10% of the data

Fig. 7. The left panel shows the k nearest neighbor graph (exemplarily for k ¼ 6) on the noisy spiral data set and its one-dimensional embedding found by

Isomap (shown in the scatter plot against the initial ordering). The right panel shows that after eliminating the shortcuts (by removing the points with large

g) Isomap’s one-dimensional embedding matches the initial ordering.

S. Harmeling et al. / Neurocomputing 69 (2006) 1608–16181616
(from the inside to the outside of the spiral). Recovering
the natural ordering of the given data set is a nonlinear
dimensionality reduction problem that can be solved by the
Isomap algorithm [35] or by locally linear embedding,
abbr. LLE [30]. Here, we use Isomap, but the same
considerations apply to LLE as well. Isomap employs
multidimensional scaling, abbr. MDS (see [10]), to a
distance matrix which measures geodesics along the k

nearest neighbor graph. The left panel in Fig. 7 shows a
typical problem that arises when the data is noisy: the k

nearest neighbor graph contains some shortcuts between
different windings of the spiral (i.e. edges that connect the
inner part of the spiral in a radial direction to the outer
part). The panel shows exemplarily the k nearest neighbor
graph for k ¼ 6. Also for all other k the graph either
contains shortcuts or it is not connected (which is another
requirement for Isomap). Consequently, the calculated
distance matrix does not measure along the geodesics and
Isomap fails to find the correct ordering of the data points
(as can be seen on the scatter plot in the left panel of
Fig. 7). This can be also seen from the MDS eigenvalues:
the number of large MDS eigenvalues corresponds to the
embedding dimensionality. For the data in the left panel,
for all choices of k the resulting dimensionality is two,
because the shortcuts lead to an inherently two-dimen-
sional structure.

In order to avoid shortcuts, we propose to remove
a certain amount of untypical points: after ignoring
10% of the untypical points (i.e. keeping n ¼ 90% of the
points that have a large g), all the shortcuts are eliminated
(as can be seen in the right panel). This allows Isomap
to estimate a meaningful distance matrix along the
geodesics and therewith to recover the original order
of the remaining 900 data points (see the scatter-plot
in the right panel). The choice of the hyper-parameters, i.e.
finding the right percentage of points n to keep and
a reasonable k for Isomap and g is uncritical in our
example. These parameters are adjusted by looking at the
MDS eigenvalues (see [10]), again at low computational
costs (see Section 2.5). In our case they have been selected
such that there is only one large MDS eigenvalue.
Note, that this is only possible after removing untypical
points. Thus we see that our simple and fast preprocessing
step can make algorithms work that would otherwise be
inapplicable.
4. Conclusion

The paper proposes three simple indices that can
efficiently order high-dimensional samples from typical to
untypical. Various applications, e.g. outlier and prototype
detection, robustifying nonlinear dimensionality reduction
and simple clustering algorithms, underline the usefulness
of our approach. In particular, in outlier detection we find
excellent results that compare favorably with more
sophisticated algorithms. Note that also the speed of our
method is very satisfying when compared with other
methods.
Already k, the distance to the kth nearest neighbor, is a

useful tool for outlier detection. However, often g, the
average distance to the k nearest neighbors, which can be
seen as a refinement of k, is preferable, e.g. as seen for some
of the data sets in Section 3.2. The third index d, the length
of the average direction to the k nearest neighbors,
performs often similar to g. However, for the clustering
example in Section 3.3.1 it clearly shows the best
performance. The reason is that d is focussing on a slightly
different property of the close neighborhood than k and g
as discussed in Section 2.4.
The simplicity of k, g and d makes them versatile tools

for exploratory data analysis, especially for high-dimen-
sional data sets. We are now free to use the ordering
information as we wish, e.g. for database cleaning, for
retraining in order to improve generalization properties of
classifiers or simply to gain insights into the usual and
unusual properties of the data at hand.



ARTICLE IN PRESS
S. Harmeling et al. / Neurocomputing 69 (2006) 1608–1618 1617
Acknowledgements

The authors are grateful for valuable discussion with
Paul von Bünau, Andreas Ziehe, Christin Schäfer, Benja-
min Blankertz, Sebastian Mika, Steven Lemm, Pavel
Laskov and Motoaki Kawanabe. This research was partly
supported by the EU-PASCAL network of excellence (IST-
2002-506778) and the Deutsche Forschungsgemeinschaft
(DFG SFB 618-B4 and MU 987/1-1) and through a
European Community Marie Curie Fellowship. The
authors are solely responsible for information commu-
nicated and the European Commission is not responsible
for any views or results expressed. Finally, the authors
would like to thank the anonymous reviewers for their
valuable suggestions.
References

[1] A. Baillo, A. Cuevas, A. Justel, Set estimation and nonparametric

detection, Can. J. Stat. 28 (3) (2000).

[2] V. Barnett, T. Lewis, Outliers in statistical data, Wiley Series in

Probability and Mathematical Statistics, second ed., Wiley, New

York, 1978.

[3] C.M. Bishop, Novelty detection and neural network validation, IEE

Proc. Vision, Image Signal Process, Appl. Neural Networks 141 (4)

(1994) 217–222 (special issue).

[4] C.L. Blake, C.J. Merz, UCI repository of machine learning

databases. http://www.ics.uci.edu/�mlearn/MLRepository.html, a

huge collection of artificial and real-world data sets, 1998.

[5] A.P. Bradley, The use of the area under the ROC curve in the

evaluation of machine learning algorithms, Pattern Recognition 30

(7) (1997) 1145–1159.

[6] M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, Lof: identifying

density-based local outliers, in: ACM SIGMOD International

Conference on Management of Data, Dallas, Texas, 2000.

[7] C. Campbell, K.P. Bennett, A linear programming approach to

novelty detection, in: T.K. Leen, T.G. Dietterich, V. Tresp (Eds.),

Advances in Neural Information Processing Systems, vol. 13, MIT

Press, Cambridge, MA, 2001, pp. 395–401.

[8] S.-B. Cho, Neural-network classifiers for recognizing totally un-

constrained handwritten numerals, IEEE Trans. Neural Networks 8

(1) (1997).

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algo-

rithms, MIT Press, Cambridge, MA, 1989.

[10] T.F. Cox, M.A.A. Cox, Multidimensional Scaling, Chapman & Hall,

London, 2001.

[11] D. de Ridder, Shared weights neural networks in image analysis,

Master’s Thesis, Technische Universiteit Delft, 1996.

[12] L. Devroye, G.L. Wise, Detection of abnormal behavior via

nonparametric estimation of the support, SIAM J. Appl. Math. 38

(1980) 480–488.

[13] R.P.W. Duin, On the choice of the smoothing parameters for Parzen

estimators of probability density functions, IEEE Trans. Comput. C-

25 (11) (1976) 1175–1179.

[14] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, S. Stolfo, A geometric

framework for unsupervised anomaly detection: detecting intrusions

in unlabeled data, Applications of Data Mining in Computer

Security, Kluwer, Docdrecht, 2002.

[15] J.H. Friedman, J.L. Bentley, R.A. Finkel, An algorithm for finding

best matches in logarithmic expected time, ACM Trans. Math.

Software 3 (3) (1977) 209–226.

[16] W. Härdle, Applied Nonparametric Regression, Cambridge Uni-

versity Press, Cambridge, 1990.
[17] S. Harmeling, Independent component analysis and beyond, Ph.D.

Thesis, Universität Potsdam, Germany, 2004.

[18] P.J. Huber, Robust Statistics, Wiley, New York, 1981.

[19] N. Japkowicz, Concept-learning in the absence of counter-examples:

an autoassociation-based approach to classification, Ph.D. Thesis,

New Brunswick Rutgers, The State University of New Jersey, 1999.

[20] E.M. Knorr, R.T. Ng, V. Tucakov, Distance-based outliers:

algorithms and applications, Int. J. Very Large Data Bases 8 (3–4)

(2000) 237–253.

[21] T. Liu, A. Moore, A. Gray, K. Yang, An investigation of practical

approximate nearest neighbor algorithms, in: L.K. Saul, Y. Weiss, L.

Bottou (Eds.), Advances in Neural Information Processing Systems,

vol. 17, MIT Press, Cambridge, MA, 2005.

[22] D. Loftsgaarden, C. Quesenberry, A nonparametric estimate of a

multivariate density function, Ann. Math. Stat. 36 (1965) 1049–1051.

[23] S. Marsland, On-line novelty detection through self-organisation,

with application to inspection robots. Ph.D. Thesis, University of

Manchester, 2001.

[24] F. Meinecke, S. Harmeling, K.-R. Müller, Robust ICA for super-

Gaussian sources, in: Proceedings of the International Workshop on

Independent Component Analysis and Blind Signal Separation

(ICA2004), 2004.

[25] F. Meinecke, S. Harmeling, K.-R. Müller, Inlier-based ICA with an

application to super-imposed images, IJIST Special Issue on BSS and

Blind Deconvolution 2005, to be published.

[26] C.E. Metz, Basic principles of ROC analysis, Semin. Nucl. Med. VIII

(4) (1978).

[27] S.M. Omohundro, Efficient algorithms with neural network beha-

viour, J. Complex Systems 1 (2) (1987) 273–347.

[28] S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining

outliers from large data sets, in: ACM SIGMOD International

Conference on Management of Data, Dallas, Texas, 2000, pp.

427–438.

[29] P.J. Rousseeuw, K. Van Driessen, A fast algorithm for the minimum

covariance determinant estimator, Technometrics 41 (3) (1999)

212–223.

[30] S. Roweis, L. Saul, Nonlinear dimensionality reduction by locally

linear embedding, Science 290 (5500) (2000) 2323–2326.

[31] C.M. Santos-Pereira, A.M. Pires, Detection of outliers in multivariate

data, a method based on clustering and robust estimators, in:

Proceedings in Computational Statistics, Physica-Verlag, 2002, pp.

291–296.

[32] B. Schölkopf, J. Platt, J. Shawe-Taylor, A.J. Smola, R.C. Williamson,

Estimating the support of a high-dimensional distribution, Neural

Computation 13 (7) (2001) 1443–1471.

[33] D.M.J. Tax, One-class classification. Ph.D. Thesis, Delft University

of Technology, http://www.ph.tn.tudelft.nl/�davidt/thesis.pdf, June

2001.

[34] D.M.J. Tax, R.P.W. Duin, Uniform object generation for optimizing

one-class classifiers, J. Mach. Learn. Res. (2001) 155–173.

[35] J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric

framework for nonlinear dimensionality reduction, Science 290

(5500) (2000) 2319–2323.

[36] D. Titterington, A. Smith, U. Makov, Statistical Analysis of Finite

Mixture Distributions, Wiley, New York, 1995.

[37] J.K. Uhlmann, Satisfying general proximity/similarity queries with

metric trees, Inf. Process. Lett. 40 (1991) 175–179.

[38] J. Weston, O. Chapelle, I. Guyon, Data cleaning algorithms with

applications to micro-array experiments, Technical Report, BIOwulf

Technologies, 2001.

[39] A. Ypma, P. Pajunen, Rotating machine vibration analysis with

second-order independent component analysis, in: Proceedings of the

First International Workshop on Independent Component Analysis

and Signal Separation, ICA’99, January 1999, pp. 37–42.

[40] A. Ypma, D.M.J. Tax, R.P.W. Duin, Robust machine fault detection

with independent component analysis and support vector data

description, in: Y.-H. Hu, J. Larsen, E. Wilson, S. Douglas (Eds.),

Neural Networks for Signal Processing, vol. IX, August 1999, pp. 67–76.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ph.tn.tudelft.nl/~davidt/thesis.pdf
http://www.ph.tn.tudelft.nl/~davidt/thesis.pdf


ARTICLE IN PRESS
S. Harmeling et al. / Neurocomputing 69 (2006) 1608–16181618
Stefan Harmeling studied mathematics with a

specialization in mathematical logic at Universi-

tät Münster (Germany) and received in 1998 the

‘‘Diplommathematiker’’ degree (cmp. to Master

in mathematics). After that he pursued a Master

program in computer science with an emphasis

on artificial intelligence at Stanford University

(USA) which he completed in 2000 (supported by

the DAAD). Since then he is a member of the

IDA group at Fraunhofer FIRST (former GMD
FIRST) in Berlin. In 2004, he obtained the

‘‘Dr. rer. nat’’ (cmp. to Ph.D) in computer science at Universität Potsdam

(Germany) with the thesis ‘‘Independent Component Analysis and

beyond’’. Dr. Harmeling is interested in all aspects of machine learning

and signal processing. In particular, he has worked on nonlinear blind

source separation, outlier detection, model selection and kernel methods.

Guido Dornhege was born in Werne, Germany,

in 1976. He received the Diploma degree in

mathematics 2002 from University of Münster,

Germany. He conducted studies of Maass cusp

forms. Since 2002 he is member of the intelligent

data analysis (IDA) group at Fraunhofer-FIRST

in Berlin working in the Berlin Brain-Computer

Interface (BBCI) project. His scientific interests

are in the field of analysis of biomedical data by

machine learning techniques.
David M.J. Tax studied physics at the University

of Nijmegen, The Netherlands in 1996,

and received Master degree with the thesis

’’Learning of structure by Many-take-all Neural

Networks’’. After that he had his Ph.D. at the

Delft University of Technology in the Pattern

Recognition group, under the supervision of

R.P.W. Duin. In 2001 he promoted with the

thesis ’One-class classification’. After working for

two years as a Marie Curie Fellow in the

Intelligent Data Analysis group in Berlin, at

present he is post doc in the Information and Communication Theory
group at the Delft university of Technology. His main research interest is

in the learning and development of outlier detection algorithms and

systems, using techniques from machine learning and pattern recognition.
In particular, the problems concerning the representation of data, simple

and elegant classifiers and the evaluation of methods have focus.

Frank C. Meinecke received the Diploma degree

in physics from the University of Potsdam,

Germany, in 2003. He is currently working

towards the Ph.D. degree in the Intelligent Data

Analysis Group at Fraunhofer FIRST in Berlin,

Germany.

His research interest is focused on nonlinear

dynamics and signal processing, especially blind

source separation and independent component

analysis.
Klaus-Robert Müller received the Diploma degree

in mathematical physics 1989 and the Ph.D. in

theoretical computer science in 1992, both from

University of Karlsruhe, Germany. From 1992 to

1994 he worked as a Postdoctoral fellow at GMD

FIRST, in Berlin where he started to build up the

intelligent data analysis (IDA) group. From 1994

to 1995 he was a European Community STP

Research Fellow at University of Tokyo in

Prof. Amari’s Lab. From 1995 on he is depart-
ment head of the IDA group at GMD FIRST

(since 2001 Fraunhofer FIRST) in Berlin and since 1999 he holds a joint

associate Professor position of GMD and University of Potsdam. In 2003

he became full professor at University of Potsdam. He has been lecturing

at Humboldt University, Technical University Berlin and University of

Potsdam. In 1999 he received the annual national prize for pattern

recognition (Olympus Prize) awarded by the German pattern recognition

society DAGM. He serves in the editorial board of Computational

Statistics, IEEE Transactions on Biomedical Engineering and in program

and organization committees of various international conferences. His

research areas include statistical physics and statistical learning theory for

neural networks, support vector machines and ensemble learning

techniques. He contributed to the field of signal processing working on

time-series analysis, statistical denoising methods and blind source

separation. His present application interests are expanded to the analysis

of biomedical data, most recently to brain computer interfacing and

genomic data analysis.


	From outliers to prototypes: Ordering data
	Introduction
	Indices for ordering
	Kappa
	Gamma
	Delta
	Comparison
	Computational complexity

	Applications
	Finding prototypical data points
	Detecting outliers on real data sets
	Data sets
	Outlier detection methods
	Error estimation
	Results

	Revealing hidden structure in noisy data
	Clustering
	Noisy nonlinear dimensionality reduction


	Conclusion
	Acknowledgements
	References


